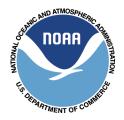

Next Generation Global Prediction System (NGGPS)

Nesting and Convective Systems Update on Team Plans and Activities

Vijay Tallapragada NOAA/NWS/NCEP/EMC

2015-10-21 01:00:00



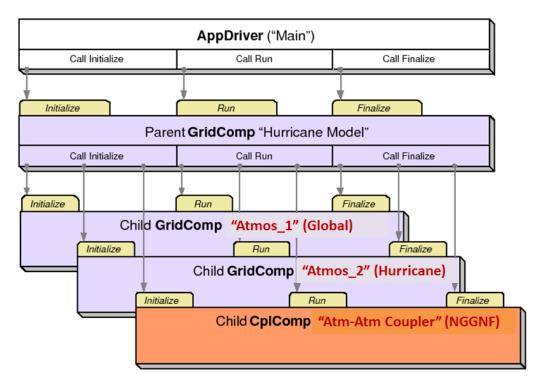
- Chair: Vijay Tallapragada, EMC
- Members:
 - <u>EMC</u>: Tom Black, Samuel Trahan, Dusan Jovic, Matt Pyle, John Michalakes, Bin Liu
 - AOML: S.G. Gopalakrishnan, Thiago Quirino, Steven Diaz
 - GFDL: S.J. Lin, Lucas Harris, Morris Bender, Tim Marchok
 - ESRL: Stan Benjamin, Jin Lee, Ligia Bernardet
 - <u>NCAR</u>: Bill Skamarock, Chris Davis
 - <u>Navy</u>: Jim Doyle
 - <u>PSU</u>: David Stensrud, Paul Markowski, Yvette Richardson
 - U. Michigan: Christiane Jablonowski, C.M. Zarzycki

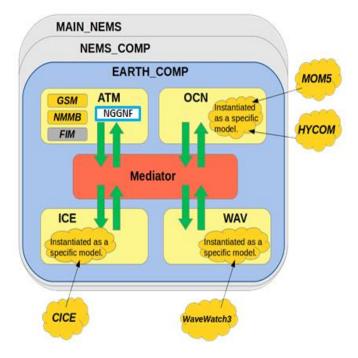
- Incorporate more sophisticated nesting or mesh refinement capabilities in the NEMS framework
- Development of generalized nesting or mesh refinement techniques
- Implement multiple static and moving nests globally, with one- and two-way interaction and coupled to other (ocean, wave, sea ice, land, etc.) models using NEMS infrastructure
- Implement scale-aware physics appropriate for the highresolution nests
- Post-processing, product development and verification of high-resolution model output

- Strategic development approach
 - Generalized nesting technique using "coupling approach"
 proof of concept (HRD/EMC/NESII)
 - Scalability and efficiency with two-way interactive nests are critical for operational considerations (interactions with overarching system/software architecture and engineering teams)
 - Appropriate physics and initialization techniques (interactions with atmospheric physics and data assimilation teams)
 - Advanced diagnostic and verification tools for evaluating non-hydrostatic model forecasts at cloud resolving scales

- Take advantage of already developed (and ongoing developmental) work in the HWRF and NMMB/NEMS systems
- Accelerate design and development of efficient two-way interactive nests using generalized nesting framework using ESMF/NUOPC coupler functionality in NEMS
- Implement variable resolution configurations and gridnesting (static and moveable) techniques for FV3 dynamic core in NEMS

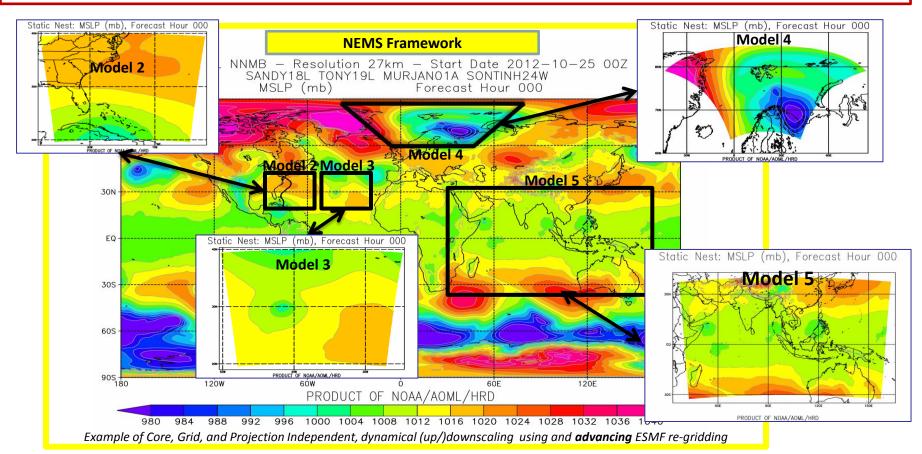
General Requirements for Operational Nesting or Grid Enhancement


- Static/moving
- 1-way/2-way interactive (nests)
- Multiple nests run simultaneously
- Bit reproducible and restartable (static/moving/ 1-way/2-way)
- Very fast and efficient!
- Dynamics, physics and initialization appropriate and applicable for high-resolution nests within the global model


Generalized Nesting By Coupling

AOML in partnership with EMC and other OAR labs is building the Next Generation Generalized Nesting Framework (NGGNF) within NEMS to advance global-2-local scale modeling for hurricanes The Coupled NEMS Project

Use of NEMS Coupler Functionality for ATM-ATM 3D coupling


Architecture of the NEMS NUOPC "mediator" with the NGGNF dynamic layer

Example: Generalized Nesting By Coupling

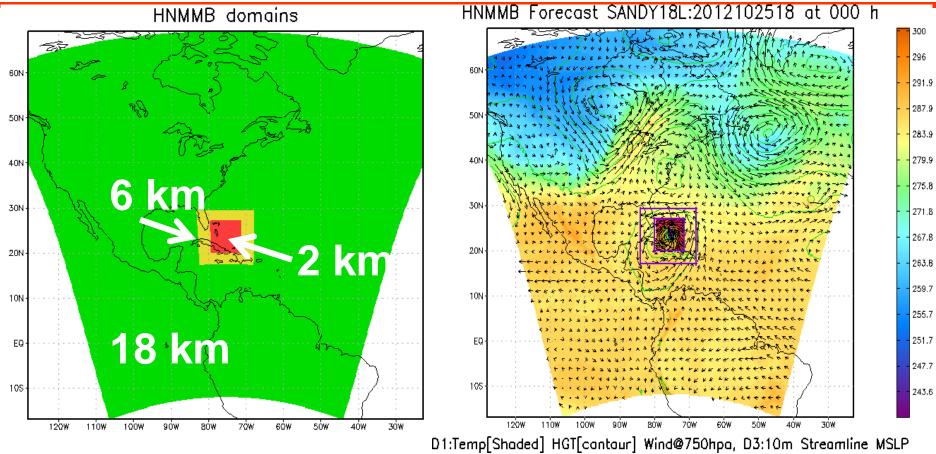
Project Statement: "The current nesting techniques in HWRF and NMMB are based on the projection center of the parent grid, limiting their applications to a confined region in the tropics, and limiting their ability to scale well at higher resolutions and pole-ward locations. A generalized nesting, core independent nesting technique that can work independent of the parent model's grid structure as well as map projections will advance the state-of-the-art in nesting techniques (one-way as well as two-way).

SVN Repository path: https://svnemc.ncep.noaa.gov/projects/hnmmb/branches/AOML-HRD/NGGNF

- Appropriate strategy for developing the "nesting by coupling" technique
 - NGGNF and NUOPC Mediator (Coupled NEMS Project) are currently developed independently
 - HRD and NESII are currently evaluating each other's approach through extensive code reviews
 - Development plans to be revised based on implementation of FV3 dynamic core in NEMS

Hurricane Developments in NMMB/NEMS

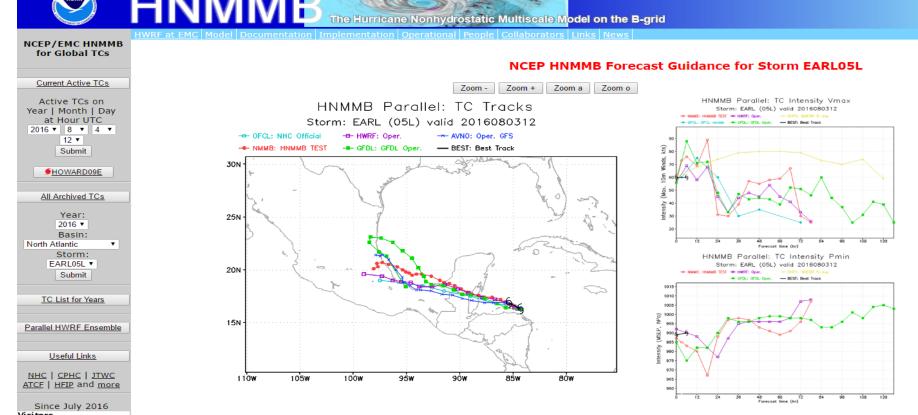
(EMC-HRD Collaborations supported by HFIP, HIWPP and R2O/NGGPS)


- EMC developing HNMMB/NEMS as a potential second hurricane model for operations
 - All major developments completed (physics, nesting, vortex initialization, postprocessing & products)
 - Ocean coupling and Hurricane Data Assimilation work to be completed by end of August
 - Real-time experimental demo started on August 1, 2016
 - Initial configuration of HNMMB to imitate operational HWRF (with choice of different physics and initialization options)
 - HNMMB has more computationally efficient nesting techniques compared to HWRF
 - Evaluate efficiency and potential for transition of multi-storm (basin-scale) configuration
 - Test ground for future hurricane nests in FV3 dynamic core based NEMS/GFS
 - Explore coupling to multiple components (ocean, wave, surge, hydrology and inundation)

Hurricane Developments in NMMB/NEMS

(EMC-HRD Collaborations supported by HFIP, HIWPP and R2O/NGGPS)

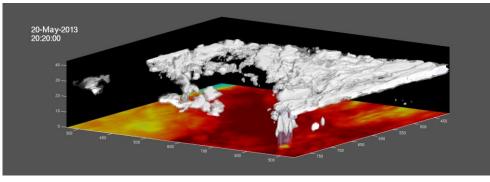
Operations-ready configuration of hurricane nests in NMMB/NEMS



Evaluation of the HNMMB in Real-Time for 2016 hurricane season

http://www.emc.ncep.noaa.gov/gc_wmb/vxt/HNMMB/

- EMC hurricane team is performing real-time forecasts of HNMMB/NEMS at 18:06:02km for 2016 hurricane season
 - Developed an end-to-end automation system for real-time forecasts


Slide courtesy: Weiguo Wang & Avichal Mehra, NCEP/EMC

Two-Way Nesting Capabilities in GFDL FV3

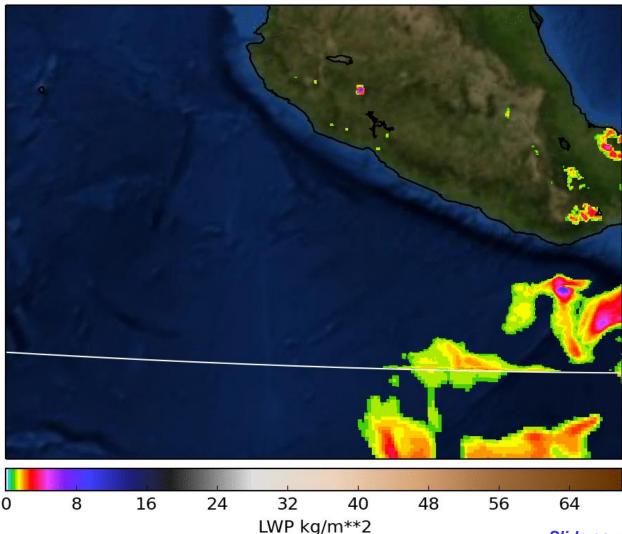
(Recent developments using HiRAM and FV3)


Examples of high-resolution nested grid simulations using HiRAM and FV3

2005-09-01 01:30:00

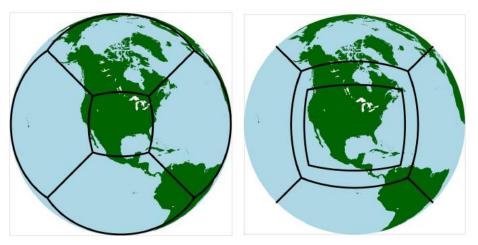
Year-long nonhydrostatic HiRAM simulation using 2005 SSTs, using an 8km nest over the tropical Atlantic

2013-05-20 12:30:00

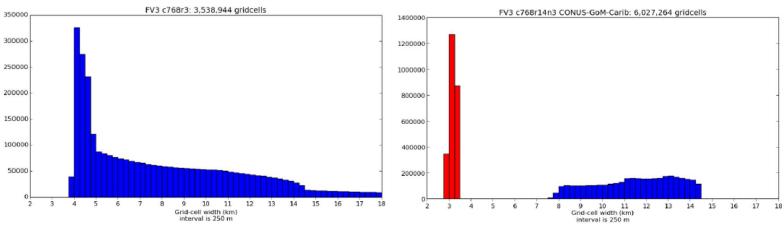

three-day HiRAM forecasts of severe convection during the Moore, OK tornado outbreak of May 2013, in a simulation nesting down to 1.3 km over the southern plains (using HIWPP 3km global runs)

Recent Examples of Nested Simulations with GFDL FV3 (DTG Phase 2)

2015-10-21 01:00:00

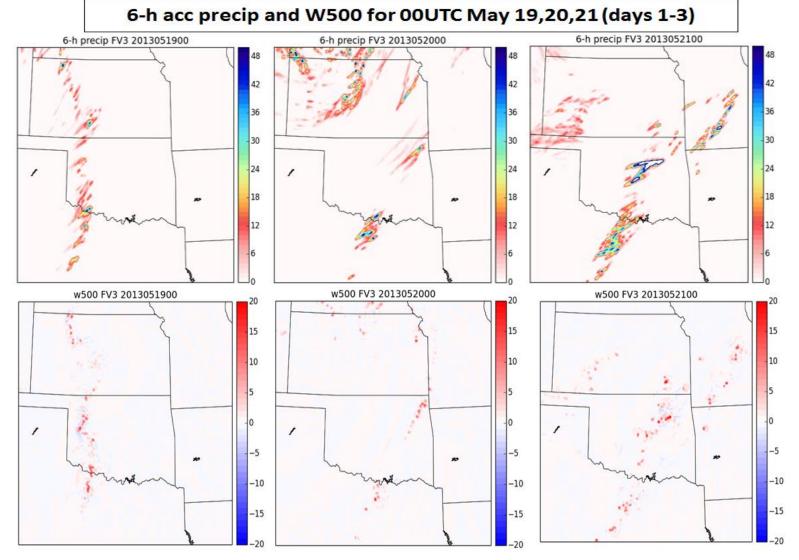

FV3 dynamical core with GFS physics (explicit convection) - nest down to 3 km for Hurricane Patricia. This configuration achieves one simulated day in about 11 minutes with about 6100 cores on Gaea-C3.

Slide courtesy: Lucas Harris, GFDL Slide 14 of 22



GFDL FV3: Stretched Grid vs. Nested Grid

Tile boundary of (left) C768r3 stretched-grid and (right) C768r14n3 nested-grid.



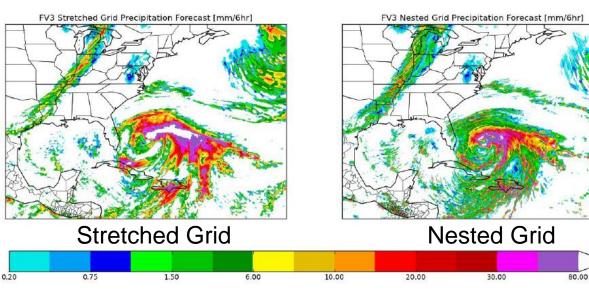
Distribution of grid-cell width of (left) C768r3 stretched-grid and (right) C768r14n3 nested-grid. Red bars indicate nested grid.

Recent Examples of Nested Simulations with GFDL FV3 (DTG Phase 2) 15-3km results for Moore Tornado case

Slide courtesy: Jeff Whitaker

Slide 16 of 22

Recent Examples of Nested Simulations with GFDL FV3 (DTG Phase 2) Hurricane Sandy Case



CMORPH

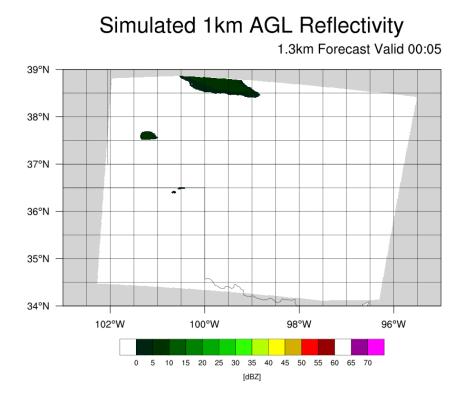
Uniform Grid

60-hr forecast of 6-hr total precip from various configurations of FV3 with GFS physics

Slide courtesy: GFDL

NGGPS Nesting Team: Updates from PSU

Advancing Storm-Scale Forecasts over Nested Domains for High Impact Weather


- Assess the ability of the North American Model (NAM) 4 km Conus Nest and 1.33 km Fire Wx Nest to provide realistic and accurate forecasts of severe convective weather (capability and accuracy)
- Develop useful diagnostics for forecasters and model developers
- Focus evaluation on supercells and convection initiation (CI) as key phenomena
- In-depth study of two cases
- Examine model output every 5 minutes and compare forecast storms and CI with observations (Doppler radar, Mesonet, surface, soundings, satellite, etc). Examine the physical processes of supercells and CI in the model

NGGPS Nesting Team: Updates from PSU

Advancing Storm-Scale Forecasts over Nested Domains for High Impact Weather

Value of 5-minute model output!

NGGPS Nesting Team: Updates from PSU

Advancing Storm-Scale Forecasts over Nested Domains for High Impact Weather

Major Accomplishment in FY16:

Identified added value of FireWx nest compared to CONUS nest for convective storms

Identified areas where improvement is needed: pulsing of weak reflectivity, cold pool depth, low-level clouds, numerical waves, supersaturation in convective region. Several already corrected.

Showed value of 5-minute model output when exploring model behaviors

Priority Focus for FY17

Continue in-depth evaluation of model CI and supercells to identify key diagnostics

Key Issue

Physical process parameterization schemes need improvement – community issue

- Continue to increase resolution of nests that can operate at cloud-resolving scales
- Couple nesting capability with more components as added to NEMS
- Demonstrate global models operating at cloud resolving scales with high-resolution nests for more accurate forecasts of significant weather events
- Develop advanced post-processing techniques, products, verification and diagnostic tools.
- Close interactions with other NGGPS atmospheric dynamics, physics, data assimilation, overarching system, software architecture and engineering teams

Questions?